The Bit Bomb

“Shannon’s ‘mathematical theory’ sets out two big ideas. The first is that information is probabilistic. We should begin by grasping that information is a measure of the uncertainty we overcome, Shannon said – which we might also call surprise. What determines this uncertainty is not just the size of the symbol vocabulary, as Nyquist and Hartley thought. It’s also about the odds that any given symbol will be chosen. Take the example of a coin-toss, the simplest thing Shannon could come up with as a ‘source’ of information. A fair coin carries two choices with equal odds; we could say that such a coin, or any ‘device with two stable positions’, stores one binary digit of information. Or, using an abbreviation suggested by one of Shannon’s co-workers, we could say that it stores one bit.

But the crucial step came next. Shannon pointed out that most of our messages are not like fair coins. They are like weighted coins. A biased coin carries less than one bit of information, because the result of any flip is less surprising. Shannon illustrated the point with this graph. You see that the amount of information conveyed by our coin flip (on the y-axis) reaches its apex when the odds are 50-50, represented as 0.5 on the x-axis; but as the outcome grows more predictable in either direction depending on the size of the bias, the information carried by the coin steadily declines.

—Rob Goodman & Jimmy Soni. “The Bit Bomb.” Aeon. August 30, 2017.

Interesting thoughout.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s